4 research outputs found

    Phonocardiogram-based diagnosis using machine learning : parametric estimation with multivariant classification

    Get PDF
    The heart sound signal, Phonocardiogram (PCG) is difficult to interpret even for experienced cardiologists. Interpretation are very subjective depending on the hearing ability of the physician. mHealth has been the adopted approach towards quick diagnosis using mobile devices. However, it has been challenging due to the required high quality of data, high computation load, and high-power consumption. The aim of this paper is to diagnose the heart condition based on Phonocardiogram analysis using Machine Learning techniques assuming limited processing power to be encapsulated later in a mobile device. The cardiovascular system is modelled in a transfer function to provide PCG signal recording as it would be recorded at the wrist. The signal is, then, decomposed using filter bank and the analysed using discriminant function. The results showed that PCG with a 19 dB Signal-to-Noise-Ratio can lead to 97.33% successful diagnosis.fi=vertaisarvioitu|en=peerReviewed

    Machine learning and wearable devices for Phonocardiogram-based diagnosis

    Get PDF
    The heart sound signal, Phonocardiogram (PCG) is difficult to interpret even for experienced cardiologists. Interpretation are very subjective depending on the hearing ability of the physician. mHealth has been the adopted approach towards simplifying that and getting quick diagnosis using mobil devices. However, it has been challenging due to the required high quality of data, high computation load, and high-power consumption. The aim of this paper is to diagnose the heart condition based on Phonocardiogram analysis using Machine Learning techniques assuming limited processing power to be encapsulated later in a wearable device. The cardiovascular system is modelled in a transfer function to provide PCG signal recording as it would be recorded at the wrist. The signal is, then, decomposed using filter bank and the analysed using discriminant function. The results showed that PCG with a 19 dB Signal-to-Noise-Ratio can lead to 97.33% successful diagnosis. The same decomposed signal is then analysed using pattern recognition neural network, and the classification was 100% successful with 83.3% trust level.© CS & IT-CSCP 2019fi=vertaisarvioitu|en=peerReviewed

    Wrist-based Phonocardiogram Diagnosis Leveraging Machine Learning

    Get PDF
    With the tremendous growth of technology and the fast pace of life, the need for instant information has become an everyday necessity, more so in emergency cases when every minute counts towards saving lives. mHealth has been the adopted approach for quick diagnosis using mobile devices. However, it has been challenging due to the required high quality of data, high computation load, and high-power consumption. The aim of this research is to diagnose the heart condition based on phonocardiogram (PCG) analysis using Machine Learning techniques assuming limited processing power, in order to be encapsulated later in a mobile device. The diagnosis of PCG is performed using two techniques; 1. parametric estimation with multivariate classification, particularly discriminant function. Which will be explored at length using different number of descriptive features. The feature extraction will be performed using Wavelet Transform (Filter Bank). 2. Artificial Neural Networks, and specifically Pattern Recognition. This will also use decomposed version of PCG using Wavelet Transform (Filter Bank). The results showed 97.33% successful diagnosis using the first technique using PCG with a 19 dB Signal-to-Noise-Ratio. When the signal was decomposed into four sub-bands using a Filter Bank of the second order. Each sub-band was described using two features; the signal’s mean and covariance. Additionally, different Filter Bank orders and number of features are explored and compared. Using the second technique the diagnosis resulted in a 100% successful classification with 83.3% trust level. The results are assessed, and new improvements are recommended and discussed as part of future work.Teknologian valtavan kehittymisen ja nopean elämänrytmin myötä välittömästi saatu tieto on noussut jokapäiväiseksi välttämättömyydeksi, erityisesti hätätapauksissa, joissa jokainen säästetty minuutti on tärkeää ihmishenkien pelastamiseksi. Mobiiliterveys, eli mHealth, on yleisesti valjastettu käyttöön nopeaksi diagnoosimenetelmäksi mobiililaitteiden avulla. Käyttö on kuitenkin ollut haastavaa korkean datan laatuvaatimuksen ja suurten tiedonkäsittelyvaatimuksien, nopean laskentatehon ja sekä suuren virrankulutuksen vuoksi. Tämän tutkimuksen tavoitteena oli diagnosoida sydänsairauksia fonokardiogrammianalyysin (PCG) perusteella käyttämällä koneoppimistekniikoita niin, että käytettävä laskentateho rajoitetaan vastaamaan mobiililaitteiden kapasiteettia. PCG-diagnoosi tehtiin käyttäen kahta tekniikkaa 1. Parametrinen estimointi käyttäen moniulotteista luokitusta, erityisesti signaalien erotteluanalyysin avulla. Tätä asiaa tutkittiin syvällisesti käyttäen erilaisia tilastotieteellisesti kuvailevia piirteitä. Piirteiden irrotus suoritettiin käyttäen Wavelet-muunnosta ja suodatinpankkia. 2. Keinotekoisia neuroverkkoja ja erityisesti hahmontunnistusta. Tässä menetelmässä käytetään myös PCG-signaalin hajoitusta ja Wavelet-muunnos -suodatinpankkia. Tulokset osoittivat, että PCG 19dB:n signaali-kohina-suhteella voi johtaa 97,33% onnistuneeseen diagnoosiin käytettäessä ensimmäistä tekniikkaa. Signaalin hajottaminen neljään alikaistaan suoritettiin käyttämällä toisen asteen suodatinpankkia. Jokainen alikaista kuvattiin käyttäen kahta piirrettä: signaalin keskiarvoa ja kovarianssia, näin saatiin yhteensä kahdeksan ominaisuutta kuvaamaan noin yhden minuutin näytettä PCG-signaalista. Lisäksi tutkittiin ja verrattiin eriasteisia suodattimia ja piirteitä. Toista tekniikkaa käyttäen diagnoosi johti 100% onnistuneeseen luokitteluun 83,3% luotettavuustasolla. Tuloksia käsitellään ja pohditaan, sekä tehdään niistä johtopäätöksiä. Lopuksi ehdotetaan ja suositellaan käytettyihin menetelmiin uusia parannuksia jatkotutkimuskohteiksi.fi=vertaisarvioitu|en=peerReviewed

    Wireless Health Monitoring System: The Vital Transmitter

    No full text
    With the marvelous growth of technology developed through years of telecommunication engineering researches, the need of deploying these technologies into the different life sectors became a fact. As a consequence, during the last decade, wireless telecommunication became a solid partner of the healthcare applications, providing remote medical monitoring among other services and capabilities. Under the hope of constructing a continuous, instantaneous remote medical monitoring system, wireless sensors started a new era of developed devices, from external hand-held devices to implantable chips that send out the vital signs of the patient to certain receivers. As well, the transmitting of the signal has gradually improved from Radio frequency identification (RFID) to Bluetooth combined with mobile communication General packet radio service (GPRS), until this system eventually invaded the market and opened a new business opportunities with different products competing for more reliability and continuity. This master’s thesis “Wireless Health Monitoring System-Vital Transmitter” aimed to build a similar system, which consists of vital sign measurement device featured with a built-in low energy Bluetooth (BLE) that was used to send the vital sign to the user’s mobile phone, the mobile phone runs a software program that is capable of contacting emergency numbers through Short Message Service (SMS), which will be sent automatically when the read vital sign exceeds a certain threshold or drops below another threshold. The software provides a short record of the read results and gives the user the option of setting the emergency numbers manually. The targeted group of users of this project is senior people and young children whom usually represent the main scope of urgent remote medical monitoring, to serve this target, the software sets the thresholds according to the user’s age, which is inserted by the patient himself. The master’s thesis promised to fulfill the continuity and reliability required by such wireless health monitoring systems, the continuity is highly considered via assuring long battery life for both the device through minding the operating mode, frequency of transmission, and BLE, also for the mobile phone through implementing BLE and minding the frequency of transmission. The heart rate measurement was chosen as a case study for the Vital Transmitter, for the sake of experimenting the reliability of the system and work on enhancements. In this master’s thesis, we describe the system architecture from a hardware viewpoint and detail the software (Android based program) conducted to provide the project’s service and discuss the setups and arrangements required through the work.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format
    corecore